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Abstract. Ballisticelectron transport in arbitrarily shaped wires is modelled by theconversion 
processes of elementary quantum modes, The resistance quantization and geometrical 
resonances are caiculated in cavity structure embedded in a quantum wire. At the resonant 
points, which correspond to virtual bound states. mode coupling becomes essential and the 
propagation of one mode is enhanced and blocked by the virtual bound state of the other. 
resulting in the appearance of a pair of resonant and anti-resonant peaks. The phase shift of 
the scattering matrix is shown to be a powerful indicator for analysing the coupling among 
quantum modes. 

1. Introduction 

Current nanofabrication technology enables us to fabricate semiconductor devices in 
which quantum effects in transport and the wave nature of the electrons become appar- 
ent. One such important technology is to confine the electrons of a two-dimensional 
electron gas (ZDEG) in a semiconductor heterostructure to regions with a lateral extent 
of 100 nm or less, resulting in narrow quantum wires, constrictions, and quantum dots. 
The Fermi wavelength of the confined electrons is close to the dimension of these 
nanostructures, so the quantization due to the standing waves becomes very important. 
Also, the small size of the structures and the very high mobility of the parent ZDEG make 
the electron transport ballistic at low temperatures. Striking examples of the novel 
physical phenomena in these ballistic nanostructures are the recent experimental obser- 
vations of resistance quantization in point-contact structure (Wharam et ai 1988, 
van Wees et a1 1988), periodic conductance resonances in a cavity (van Wees ef ai 
1989, Meirav et al1990), and one-dimensional bandstructure in quantum dot lattices 
(Kouwenhovenetai 1990a, Kouwenhoven etal1990b,Haugetai 1990). Although many 
resonant and anti-resonant peaks have been observed in these structures, the nature of 
these resonances has not been clearly understood. 

Ballistic transport in quantum wires has been studied by many authors (Szafer and 
Stone 1989, Kirczenow 1989, Yosefin and Kaveh 1990, Ulloaetall990, Brum 1990). A 
quantum wire is divided into a sequence of boxes and the wavefunctions are connected 
by matching the boundary conditions at the interfaces between the boxes. Using this 
methodelectron transport has been studied for simple geometries. However, it is rather 
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Figure 1. Plan view of a semiconductor wire. The 
wavefunctionafelectrons Ovanishesatthe quan- 
tum wire boundary. 

difficult to extend this method to more complicated geometries and to the incorporation 
of the electric field effect because the matrix dimension becomes quite large. 

In this paper the wavefunction is expanded into the elementary quantum modes and 
the coefficients of these modes are obtained by the transfer matrix method. The element 
of the transfer matrix describes the conversion process among the elementary quantum 
modes. This coupled-mode transfer matrix method makes it possible to calculate the 
electron transport in arbitrarily shaped quantum wires and to include the electric field 
effect, although this paper only treats the former situation. Particular attention is 
focused on the resistance in cavity structure, because this is the fundamental element for 
constructing more complicated structures such as quantum dot lattices. 

2. Scattering formalism 

The system under consideration is very simple. Electrons are confined at the surface in 
the z direction (e.g. ZDEG) and propagate in the x, y directions. The wavefunctions of 
the electrons vanish at the boundary of the quantum wire as shown in figure 1. Such 
quantum wires have been fabricated by several methodsSchottky gate depletion 
(Thornton et a1 1986), FIB induced damage isolation (Hiramoto et a1 1987), etching 
(Ishibashi et a1 1988), and biased FIB implanted p-regions (Blaikie er a1 1991). 

The two-dimensional Schrodinger equation is written as 

- (fiZ/2m)(a'/Jxz + az/ay2)@ + V@ = E@ (1) 
where f i  is the Planck constant divided by 2n, m is the electron mass, Vis a potential, 
and E is an energy. The reduction from the three-dimensional Schodinger equation to 
the two-dimensional Schrodinger equation may be obtained by the decoupled approxi- 
mations developed in the framework of the envelope function approximation (Bmm 
1990). 

The present configuration is an open system in which electrons are entered or 
absorbed through electrodes. In such a system the problem is similar to the scattering 
problem in which the boundary condition is that the wavefunction takes a linear com- 
bination of propagating waves into and out of the system. Without loss of generality, in 
the regions x < x L  and x > xR it is assumed that quantum wire is a straight line parallel 
to the x axis and the potential Vis constant. The electron channel of quantum wire is 
defined by y,(x) > y > yz(x)  as shown in figure 2. 

The wave function takes the following form forx < xL: 

" 1  

,=1 f @ L )  
@= x r (alL exp(ikj(xdx - x L ) ) + ~ , L  exp(-ik,(xl)(*-x,))cf(xlly) (W 
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and for x > x R ,  

Figure 2. Configuration of the system. A 
quantum WirestNctureisconnected totwo 
rlectrodeswhich are modelled by ideal res- 
ervoirs. 

where cj is a complete set of orthonormalized functions in y direction along the line of 
constantx, 

In equation (2), n is the maximum integer for which k. has a real value. For the notational 
simplicity, the same n is assumed in x < xL and in x > xR, although the extension to the 
case of different n is straightforward. 

Coefficients ai and bi defined by equation (2) are related by the scattering matrix S, 

The vector on the right-hand side of the above equation represents the incoming wave 
and the vector on the left-hand side represents the outgoing wave. The scattering matrix 
S is a 2n by 2n matrix written by the transmission and reflection coefficients as follows, 

The density matrix of the system is defined by 

p(r, = E y i ( r ) f i y r  (6) 
i 

where Yi is a complete set of eigenfunctions and f, is the distribution function. It is 
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assumed that there are no real bound states in the quantum wire. This means that the 
wavefunctions, the asymptotic form of which is given by equation (2). can construct a 
complete set of the system. By taking the following eigenfunctions, 
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*,:bou%dary condition (Vj\alL = m 8 , j ,  bjR = 0) 

a;.-: bnlndnr! condition (VilajL = 0, b,R = -8ij) 

(94 

(9b) 
the density matrix (8) isgiven by 

where 

vjL = v(xL) + (h'/zm)(xi/Cvt(xL) -yz(xd))* 
(11) 

v,R = V(xR) + (h2/2m)(ni/Cvl(xR) - Y ~ ( x R ) ) ) ~ .  

Heref, andfR are the distribution functions of the left and right incoming waves. The 
quantum wire is connected to two electrodes which are modelled well by black bodies. 
That is, electrons emerge from an electrode with its local equilibrium distribution, and 
electrons entering an electrode are absorbed completely. The electrodes are assumed 
to be ideal reservoirs characterized by their chemical potentials, EFL and EFR, which are 
given by the external biases, V, and VR, as 

E ,  = EF - qVL EFR = EF - qvR (12) 
where EE is the equilibrium Fermi energy and q is the absolute value of electron charge. 
The density matrix gives electric current density, 

J(r) = -q(h/2mi)(J/Jr - a/ar')p(r, r')lr=,>. (13) 
Thedensitymatrix(10) andtheelectriccurrentdensity(13) givethetotalelectriccurrent 
in the quantum wire. Sincc the total current is conserved along the quantum wire, it can 
be estimated just outside of the electrodes using the asymptotic form equation (2). From 
the blackbody distribution withchemicalpotentials(l2). the totalcurrent in thequantum 
wire is given by 

wheref(E) is the Fermi-Dirac distribution function and F ( E )  is the transmission prob- 
ability defined by 

T(E) = ItR(i,i)120(E - VL)0(E - VIR) 
iJ=1 

= E ItL(j, i ) 2 0 ( ~  - vjL)O(~ - VI=). (15) 
i j =  I 

Here 0 is the step function ( 0 ( x )  = 0 when x < 0 and 0(x) = 1 whenx > 0) and the time- 
reversal symmetry of the scattering matrix is used. 

The scattering theory gives a complete set of orthonormalized eigenfunctions in 
the quantum wire which satisfy the boundary conditions, and the reservoir nature of 
electrodes gives the distribution of these eigenfunctions. These are the essentials of the 
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Landauer formulation. However, the latter assumption may be replaced by the rate 
equations when the scattering among eigenfunctions or many-body effects become 
important. Even in this case the eigenfunctions obtained by the scattering theory may 
still play an important role as a basis in the electron transport. 

3. Approximations 

In the quantum wire structure, the wavefunction is expanded by the complete set (3), 
= 

% Y )  = 2 xi(x)ci(xlY). (16) 
i = l  

The coefficient xi obeys a matrix equation and the coupling of different modes occurs 
according to the boundary variation of the quantum wire. The details are described in 
appendix 1. The matrix equation is solved and the scattering matrix obtained gives the 
total current using equations (14) and (15). Although the dimension of the matrix of the 
equation is infinite, the scattering matrix converges quickly after the maximum mode 
number exceeds n + 2 where n is a maximum integer for which the wave number k. finds 
a real value in the quantum wire. 

In this paper the electric field effect is neglected in the calculations so that the 
potential, V, is equal to zero throughout the system. Furthermore the potential dif- 
ference between two electrodes is assumed to be small so that equation (14) gives a 
resistance R, 

Here the resistance quantum R, is equal to h/2q2. At absolute zero temperature the 
resistance is simply given by the transmission probability at equilibrium Fermi energy, 
R = R,/T(EF) .  The effect of finite temperature is to average the transmission probability 
around the Fermi energy within a width of k,T. 

When the scattering and electron-electron interactions are neglected, the Schro- 
dinger equation (1) and the resistance expression (17) are invariant by the following 
scaling transformation, 

x+ Ax E + P E  T+ A-ZT. (18) 
This scaling relation suggests that in smaller structures (A < 1) quantum effects may be 
observed at higher temperatures. Furthermore, this scaling allows us to fix the length of 
quantum wires in our calculations since similar shaped quantum wires give the same 
results by scaling the energy according to equation (18). In this paper the width of the 
quantum wire will be fixed at 100 nm and the transmission probability T ( E )  which gives 
the conductance at absolute zero temperature will be discussed. 

4. Calculation of conductance in cavity structure 

Figure 3 shows the results for a cavity structure, which'is a quantum dot structure 
embedded in a quantum wire, the plan view of which is shown in the inset. The width of 
the quantum wire is 100 nm and the width of two constrictions is defined by W. When 
W = 0 the quantum dot becomes a square. In calculation the effective mass of the 
electron is assumed to be that of GaAs, 0.067 mo where mo is the electron mass in 
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Figure3,Transmission probabilityincavitystructures.Thedatted line indicates theclassical 
conductance. 

vacuum. The overall character of the conductance is described by a classical expression 
for the conductance with the width W, R,/R = k,W/n, where kF = m / h  is the 
Fermi wavelength. Around the classical value, the conductancefluctuates with amplitude 
l / R q ,  similar to universal conductance fluctuations under a magnetic field (Lee and 
Stone 1985). 

This conductance fluctuation consists of many sharp resonances and anti-resonances. 
A rough estimation of these resonant points is obtained by a non-coupling approxi- 
mation. When the coupling among different modes is neglected, the wavefunction of 
the jth mode follows the one-dimensional Schrodinger equation in a potential, 

vi = v ( x )  + (fi2/2m)bi/dvl(x) - y2(x))I2.  (19) 

The WKB approximation gives a quantum condition, 

I kj (x)  dx = (n  + y ) n  n =o, 1,. . . (20) 
Cavity 

where the integral is taken in the region that kj(x) has a real value in the cavity. A 
constant y takes a value between 1 and 1, depending on the shape of the potential V,. In 
the case of figure 3, the shape changes linearly near constrictions and the constant y is 
nearly equal to 1. 

Figure 4 shows the effect of mode-coupling. The resonant peaks are characterized 
by apairof quantumnumbers (j, n) inequation (20). Important effectsof mode-coupling 
are the shift of the resonance energy and the appearance of anti-resonances. Besides the 
shift and the anti-resonances the non-coupling picture explains the main features of the 
transmission probability. The origin of anti-resonance is as follows. When the energy 
becomes high, a lower mode starts to propagate by incoherent tunnelling through two 
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Figure 4. Effect of mode coupling on the 
transmission probability of a cavity struc- 
ture. The resonant peaksarecharacterized 
by twoquantum numbers ( j ,  n )  inequation 
(20). ‘a’means anti-resonance. 

constrictions as shown in figure 5. The transmission probability has a finite value, but 
there isno coherence between the two tunnelling event sat the constrictions, When there 
is a virtual bound stateof a higher mode in the cavity, coupling between the propagating 
lower mode and the virtual bound state occurs. The wavefunctions of the propagating 
lower mode and the virtual bound state of higher mode are denoted by q, and qh. 
There are two possible combinations of the wavefunctions, q1 2 qh. One of these two 
combinations assists the coherent tunnelling of lower propagating mode, resulting in a 
resonant peak if the transmission is less than 1 (figure 5(a) ,  ( b ) ) .  However, if the channel 
of the lower mode is completely opened, that is, the transmission is 1, there is no 
effect on the transmission probability (figure 5(c)) .  The other combination prevents the 
propagation of the lower mode, resulting in an anti-resonance. This anti-resonance 
appears when the channel of the lower mode is opened (figure 5(b ) ,  (c ) ) .  

In order to clarify the situation it is very useful to discuss the eigenvalues of the 
scattering matrix. By the unitarity condition the eigenvalue has unit modulus and may 
be writtenexp(Zi6)with real 6. Figure6shows the phaseshift, 6,asafunctionofenergy. 
The phase shift gives the phase change through the quantum wire and has a similar 
meaning to the wave number. The phase-shift diagram (figure 6) therefore gives a 
dispersion relation of the quantum modes in quantum wire. The resonant point is 
characterized by the point that the phase shift 6 takes a value close to 0 and n / Z .  Around 
the resonant points the phase shift changes value by x. if there is another propagating 
mode, crossing of the corresponding phase shifts occurs, resulting in a strong coupling 
of two modes as is clearly shown at points (2,2) (3,O) in figure 6. 

Figure 7 shows the general feature of the energy-longitudinal wave number dis- 
persion relation. In the case of straight quantum wire the dispersion relation consists of 
several parabolas corresponding to several propagating modes. The energy at k = 0 is 
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FigureS. Schematic featureof transmission probability as a function ofenergy when alower 
propagating mode couples with a virmal bound state of a higher mode. 

Figure6. Phaseshift diagramofa cavitystructure. Inorder to show the phase shift near26 = 
R the same figure is repeated twice. The resonance occurs when phase shift 26 takes value 
nearly 0 and R 
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Figure 7. Schematic feature of energy-longitudinal wave number relation of (a) a quantum 
wire structure and (b) a cavity structure embedded in a quantum wire. 

given in equation (19). Introducing a cavity structure in a quantum wire, reflection of 
electron waves at two constrictions occurs and strong interference results in resonant 
peaks. The dispersion line becomes Bat, similar to band gap formation in solids. At the 
resonant point, the dispersion line may touch the line of the other mode, and strong 
mode mixing occurs, resulting in an anti-resonance peak. It should be noted that even 
infinitesimally small boundary perturbation causes a pair of resonant and anti-resonant 
peaks. Smaller pertubations give sharper peaks as shown in figure 3. 

5. Discussion and conclusion 

In this paper the geometrical effect on ballistic electron transport is modelled by the 
scattering theory and the assumption of ideal reservoirs for electrodes, which are the 
essentials of the Landauer formulation. The scattering matrix is calculated by the 
coupled-mode transfer matrix method. An element of the transfer matrix represents 
the conversion process between elementary quantum modes, which is caused by the 
variation of the boundary of quantum wire. The resistance quantization and geometrical 
resonances are calculated by this method. At resonant points in cavity structures strong 
mode coupling occurs, resulting in the enhancement or blocking of the one-dimensional 
propagation by 0-dimensional virtual bound state of different mode. The phase shift is 
shown to be a powerful method for analysing the coupling among these quantum modes. 
Furthermore, resonances can he characterized by special value of phase shift as shown 
in figure 6, which may lead to a general argument of electron transport in quantum wires. 

There are many problems to be solved in future work. For example, the electric 
potential effect, multi-connection structures such as rings, electron-electron inter- 
actions, and so on. A n  important problem to be solved in future works is a Coulomb 
interaction effect among electrons in the quantum wire, since the electrons are fully 
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confined and thesmall structures may reduce the confinedelectronsso that the transport 
may be influenced strongly by the existence of other background electrons. 

Recently, bandstructures in quantum dot lattices have been observed (Kouwen- 
hoven et a[ 1990a,b, Haug er al 1990). In the quantum wire structures it is possible to 
integrate arbitrary 'material' having designed energy gap and effective mass. In thiscase 
the inverse scattering theory may become an important tool in the design of such artificial 
'material'. 

K Nakazaro and R J Blaikie 
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Appendix 1. Coupled-mode transfer matrix method 

Insertion of equation (16) to the Schrodinger equation (1) gives 

where 

where 

L 

equation (AI) becomes 

with 
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8 (x) p-gb Y&) 

X 
%.I ! x, : 

%+in Figure A l .  Coordinate of calculation. 

The above equation can be solved by dividing the plan pattern of the quantum wire into 
segments as shown in figure A l .  We approximate the constant win each segment, 

w&) = w;j(Xn+,/2) forx, ex <x.+,. (As) 
When the electric potential effect is neglected, the matrix K defined by equation (A3) is 
diagonal and the wave function in the segment n is given by 

x 

[ a y )  exp(ikj")(x - x n + 1 / 2 ) )  
1 

@'"'(X,Y) = M,(x, X" , , /2 )  - 
i . j = 1  w 

where M(xl,x2) is 

M(x1,xZ) = M(xI)M(x2)-' = exp ( - r' 
d x )  

X ?  

Equation (AlO), based on the Cayley transform, satisfies the condition M'M = 1 which 
guarantees total current conservation, and is valid up to the second order of Ay,/ 
(yI  - y 2 )  and Ay2/(yl - y 2 )  which is consistent with the approximation (A8). The 
explicit form of the coefficient is 

By the connection rule that the wavefunction and its x derivative are continuous at x,, 
the coefficients a, 6 are obtained successively, 
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where 
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The total transfer matrix is given by 

( ~ 1 4 )  T = T(WT(N-I) , , , T(1). 

Here xI = = x R .  The transfer matrix obtained has elements in 
which k, takes an imaginary value. The boundary condition is that there are no growing 
modes outside the quantum wire, a!) = bf) = 0, where (I) means the elements cor- 
responding to the imaginary value of k), and the sign of the imaginary wave number is 
defined by ikI > 0. Using this boundary condition, a 2n by 2.n transfer matrix and the 
scattering matrix are obtained. 

= xL and xAr = xN+ 
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